The Euler-Lagrange Cohomology Groups on Symplectic Manifolds

نویسندگان

  • Han-Ying Guo
  • Jianzhong Pan
  • Ke Wu
  • Bin Zhou
چکیده

The definition and properties of the Euler-Lagrange cohomology groups H EL , 1 6 k 6 n, on a symplectic manifold (M2n, ω) are given and studied. For k = 1 and k = n, they are isomorphic to the corresponding de Rham cohomology groups H1 dR(M 2n) and H dR (M 2n), respectively. The other Euler-Lagrange cohomology groups are different from either the de Rham cohomology groups or the harmonic cohomology groups on (M2n, ω), in general. The general volume-preserving equations on (M2n, ω) are also presented from cohomological point of view. In the special cases, these equations become the ordinary canonical equations in the Hamilton mechanics. Therefore, the Hamilton mechanics has been generalized via the cohomology. Email: [email protected] Email: [email protected] Email: [email protected] Email: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symplectic , Multisymplectic Structures and Euler - Lagrange Cohomology

We study the Euler-Lagrange cohomology and explore the symplectic or multisym-plectic geometry and their preserving properties in classical mechanism and classical field theory in Lagrangian and Hamiltonian formalism in each case respectively. By virtue of the Euler-Lagrange cohomology that is nontrivial in the configuration space, we show that the symplectic or multisymplectic geometry and rel...

متن کامل

Difference Discrete Variational Principle , Euler - Lagrange Cohomology and Symplectic , Multisymplectic Structures

We study the difference discrete variational principle in the framework of multi-parameter differential approach by regarding the forward difference as an entire geometric object in view of noncomutative differential geometry. By virtue of this variational principle, we get the difference discrete Euler-Lagrange equations and canonical ones for the difference discrete versions of the classical ...

متن کامل

Euler-Lagrange equations and geometric mechanics on Lie groups with potential

Abstract. Let G be a Banach Lie group modeled on the Banach space, possibly infinite dimensional, E. In this paper first we introduce Euler-Lagrange equations on the Lie group G with potential and right invariant metric. Euler-Lagrange equations are natural extensions of the geodesic equations on manifolds and Lie groups. In the second part, we study the geometry of the mechanical system of a r...

متن کامل

On Symplectic and Multisymplectic Srtuctures and Their Discrete Versions in Lagrangian Formalism

We introduce the Euler-Lagrange cohomology to study the symplectic and multisymplectic structures and their preserving properties in finite and infinite dimensional Lagrangian systems respectively. We also explore their certain difference discrete counterparts in the relevant regularly discretized finite and infinite dimensional Lagrangian systems by means of the difference discrete variasional...

متن کامل

The Euler-Lagrange Cohomology and General Volume-Preserving Systems

We briefly introduce the conception on Euler-Lagrange cohomology groups on a symplectic manifold (M2n, ω) and systematically present the general form of volumepreserving equations on the manifold from the cohomological point of view. It is shown that for every volume-preserving flow generated by these equations there is an important 2-form that plays the analog role with the Hamiltonian in the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008